500 kg High-Load Hexapod
 HIGH-PRECISION AND REPEATABLE POSITIONING

H-850KMLD

- Min. incremental motion $1 \mu \mathrm{~m}$ (X,Y), $0.5 \mu \mathrm{~m}(\mathrm{Z})$
-Travel ranges to $100 \mathrm{~mm} / 60^{\circ}$
- Optionally with absolute encoders

Reference-class 6-axis positioning system
Parallel-kinematic design for six degrees of freedom making it significantly more compact and stiff than serial-kinematic systems, higher dynamic range, no moved cables: Higher reliability, reduced friction. Large clear aperture

Optional feature: Absolute position measurement
Optionally, the position is measured using absolute encoders. The exact position of the axes is determined after the Hexapod has been switched on. A reference move is not necessary

Powerful digital controller, open software architecture 6 D vector motion controller for Hexapods, plus two additional servo axes. Arbitrary, stable pivot point,
software-selectable. Positions commanded in Cartesian coordinates. Macro command language. Open-source LabVIEW driver and libraries. Determination of the workspace. Virtual machine for Hexapod emulation. Optional: Software for avoiding collisions in restricted workspace

Fields of application

Research and industry. For astronomy, aviation and aerospace

Related products

H-850 6-Axis Hexapod H-845 High-Load Hexapod

M-850 Hexapod 6-Axis Positioner, High Load, High Precison
 High-Load Parallel-Kinematics Micropositioner with Controller, to 2000 N

- Six Degrees of Freedom
\square Works in Any Orientation
■ No Moving Cables for Improved Reliability and Precision
■ 200 kg Load Capacity (Vertical)
■ Heavy-Duty, Ultra-High-Resolution Bearings for 24/7 Applications
\square Repeatability to $\pm 1 \mu \mathrm{~m}$
■ Encoder Resolution to $0.005 \mu \mathrm{~m}$
■ Significantly Smaller and Stiffer than Serial-Kinematics
Systems, Better Dynamics
■ Vacuum-Compatible Versions Available
- Linear and Rotary Multi-Axis Scans
- Virtual Pivot Point
- Sophisticated Controller Using Vector Algorithms

■ MTBF 20,000 h

> Application Examples
> - Alignment of secondary mirrors
> - Semiconductor technology
> - Optics alignment
> - Medical technology
> - Micromachining
> - Micromanipulation
> - X-ray diffraction measurements
> - Satellite testing equipment
> - Tool control
rotation (pivot point) anywhere inside or outside the system envelope by one simple software command.

Two models are available: The M-850.50 featuring higher speed and direct-drive actuators, and the $\mathrm{M}-850.11$ with a gear ratio that makes it selflocking even with large loads.

Hexapod vs. Serial Kinematics Systems

The Hexapod is driven by six high-resolution actuators all connected directly to the same moving platform. This design provides a high system stiffness and a large clear aperture.

Because of the low mass of the moving platform, positioning operations can be performed with far lower settling times than with conventional, stacked multi-axis systems. In such systems, runout, guiding errors, and the friction and inertia of moving cables all accumulate to limit accuracy and repeatability-problems which do not affect parallel kinematic systems like the Hexapod.

Fixed Virtual Pivot Point

For optics and other alignment tasks, it is important to be able to define a fixed pivot point. The sophisticated Hexapod controller allows choosing any point in space as the pivot point for the rotation axes by software command. The pivot point remains fixed relative to the platform.

Target positions in 6-space are entered in user-friendly coordinates and reached by smooth vectorized motion.

Open Architecture

Control of the hexapod is facilitated by the controller's open interface architecture, which

The Hexapod comes with a powerful 6D controller and sophisticated, user-friendly positioning and alignment sofware. Keypad and display are optional
provides a variety of high-level commands and includes a macro language for programming and storing command sequences.

Automatic Optical Alignment

With the internal or external photometer option and the integrated scanning routines, just a few commands are needed to perform an automated alignment of optical components. For more information on photometers / optical power meters, see www.pi.ws.

A smaller, even-more-precise hexapod, specially developed for alignment of collimators, fiber bundles and I/O chips, is available as the F-206 (see p. 4-12).

Custom Hexapod designed for neurosurgery Photo: IPA

Custom "6+3" Hexapod with additional struts providing independent position feedback

Technical Data

HexControl ${ }^{\text {TM }}$ software showing scan of a fiber optics component
*The max. travel of the several coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \theta_{\mathrm{X}}, \theta_{\mathrm{Y}}, \theta_{\mathrm{Z}}$) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.
**Six-axis move. No moving cables (unlike serial-kinematic stacked
systems) to introduce bending forces, torque and friction which degrade positioning accuracy.
Example: The following position is in the workspace:
X: $+20 \mathrm{~mm} \theta_{\mathrm{X}}:+10^{\circ}$
$Y:+20 \mathrm{~mm} \theta_{Y}:+10^{\circ}$
$\mathrm{Z}:+5 \mathrm{~mm} \theta_{\mathrm{Z}}:-2^{\circ}$
**Baseplate mounted horizontally with 10 kg load

M-840 HexaLight 6-Axis Parallel Positioning System, 30 kg High-Speed Parallel-Kinematics Micropositioner with Controller, to $50 \mathrm{~mm} / \mathrm{s}$

\square Six Degrees of Freedom, Travel Ranges to $\mathbf{1 0 0 ~ m m / 6 0}$ - Rapid Response

■ No Moving Cables for Improved Reliability and Precision
■ Self-Locking Version M-840.DG3: Load Capacity up to $\mathbf{3 0} \mathbf{~ k g}$
■ Direct-Drive Version M-840.5PD: Velocity up to $50 \mathrm{~mm} / \mathrm{s}$
\square Repeatability up to $\pm 2 \mu \mathrm{~m}$
■ Encoder Resolution up to $0.016 \mu \mathrm{~m}$
\square Significantly Smaller and Stiffer than Serial-Kinematics Systems, Better Dynamics
\square Vacuum-Compatible Versions Available
\square Virtual Pivot Point

- Sophisticated Controller Using Vector Algorithms

■ MTBF 20,000 h

The Hexapod comes with a powerful 6D controller and sophisticated, user-friendly positioning and alignment sofware. Keypad and display are optional

The M-840 is the ideal micropositioning system for all complex positioning tasks which rely on

Application Examples

- Biotechnology
- Semiconductor technology
- Micromachining
- Micromanipulation
- X-ray diffraction measurements
- Tool control
of up to 10 kg in horizontal and up to 3 kg in random orientation at up to $50 \mathrm{~mm} / \mathrm{s}$ and 600 $\mathrm{mrad} / \mathrm{s}$ with micron accuracy. The DC-motor-version, M-840.DG3, is basically selflocking. It positions loads of up to 30 kg in horizontal and up to 10 kg in random orientation, and offers smallest sub-micron step sizes.

Hexapod vs. Serial Kinematics Systems

The Hexapod is driven by six high-resolution actuators all connected directly to the same moving platform. This design provides a high system stiffness and a large clear aperture. Because of the low mass of the moving platform, positioning operations can be performed with far lower settling times than with conventional, stacked multi-axis systems. In such systems, runout, guiding errors, and the friction and inertia of moving cables all accumulate to limit accuracy and repeata-bility-problems which do not affect parallel kinematic systems like the Hexapod.

Fixed Virtual Pivot Point

For optics and other alignment tasks, it is important to be able to define a fixed pivot point. The sophisticated Hexapod controller allows choosing any point in space as the pivot point for the rotation axes by software command. The pivot point remains fixed relative to the platform.
Target positions in 6-space are entered in user-friendly coordinates and reached by smooth vectorized motion.

Open Architecture

Control of the hexapod is facilitated by the controller's open interface architecture, which provides a variety of high-level commands and includes a

Ordering Information
M-840.5PD
Hexapod Microrobot with Controller, Direct Drive, 10 kg Load
\section*{M-840.DG3}
Hexapod Microrobot with Controller, DC Motor Gearhead, 30 kg Load
Optional Photometer
F-206.iiU
Photometer Card, IR Range, 2 Channels
F-206.VVU
Photometer Card, Visible Range, 2 Channels
F-361.10
Absolute-Measuring Optical Power Meter, 1000 bis 1600 nm Wavelength
More Hexapod-Models:
M-850 High-Load Hexapod s. p. 4-6
M-824 Vacuum Compatible Hexapod s. p. 4-10
F-206 Micropositioning System for Maximum Accuracy s. p. 4-12

HexControl software showing scan of a fiber optics component

macro language for programming and storing command sequences.

Automatic Optics Alignment

With the internal or external photometer option and the inte-
grated scanning routines, just a few commands are needed to perform an automated alignment of optical components. For more information about the photometers see www.pi.ws.

Model	M-840.5PD	M-840.DG3	Units
Active axes	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	
Motion and positioning			
*Travel range X, Y	± 50	± 50	mm
*Travel range Z	± 25	± 25	mm
*Travel range $\theta \mathrm{X}, \mathrm{\theta Y}$	± 15	± 15	-
*Travel Range θ Z	± 30	± 30	-
Actuator drive	DC-motor	DC-motor	
Actuator stroke	± 25	± 25	mm
Integrated sensor	Rotary encoder	Rotary encoder	
Sensor resolution	2048	2048	
Actuator design resolution	0.5	0.017	$\mu \mathrm{m}$
**Min. incremental motion X, Y	3	1	$\mu \mathrm{m}$
**Min. incremental motion Z	1	0.5	$\mu \mathrm{m}$
**Min. incremental motion $\theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	5	5	$\mu \mathrm{rad}$
Repeatability X, Y	± 2	± 2	$\mu \mathrm{m}$
Repeatability Z	± 1	± 1	$\mu \mathrm{m}$
Repeatability $\theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	± 20	± 20	$\mu \mathrm{rad}$
Max. velocity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	50	2.5	mm / s
Max. velocity $\theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	600	30	$\mathrm{mrad} / \mathrm{s}$
Typ. velocity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	30	2	mm / s
Typ. velocity $\theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$	300	20	$\mathrm{mrad} / \mathrm{s}$
Mechanical properties			
Max. load (baseplate horizontal / any orientation)	10/3	$30 / 10$	kg
Max. holding force (baseplate horizontal / any orientation)	15/5	$100 / 25$	N
Resonant frequency*** FX, FY	100	100	Hz
Resonant frequency*** FZ	300	300	Hz
Miscellaneous			
Operating temperature range	-10 to +50	-10 to +50	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	
Mass	12	12	kg
Controllers			
Delivered controller	M-850.502	M-850.502	
Operating voltage	100-240 VAC, $50 / 60 \mathrm{~Hz}$	100-240 VAC, 50/60	

Technical data are specified at $20 \pm 3^{\circ} \mathrm{C}$. Data for vacuum versions may differ. * The max. travel of the several coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \theta \mathrm{X}, \theta \mathrm{Y}, \theta \mathrm{Z}$) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less. ** Six-axis move. No moving cables (unlike serial-kinematic stacked systems) *** Horizontal mounted baseplate without load.

M-824 Compact 6-Axis Vacuum Positioning System
 Precision Parallel-Kinematics Micropositioner with Controller, Vacuum Versions

M-824.3DG compact vacuum Hexapod

■ Extremely Compact

- Travel Ranges to 45 mm (linear), $\mathbf{2 5}^{\circ}$ (rotation)

■ Load Capacity to 10 kg , Self Locking Version
Resolution to 7 nm
Min. Incremental Motion to $\mathbf{3 0 0} \mathbf{~ n m}$
\square Repeatability $\pm 0.5 \mu \mathrm{~m}$
\square Velocity to $25 \mathrm{~mm} / \mathrm{sec}$
Vacuum-Compatible Versions Available

The M-824 is the ideal micro positioning system for all complex positioning tasks which depend on high speed and accuracy in six independent axes. In addition to positioning all axes, it allows the user to define a center of rotation (pivot point) anywhere inside or outside the system envelope by one simple software command.

Application Examples

- Biotechnology
- Semiconductor technology
- Micromachining
- Micromanipulation
- X-ray diffraction measurements
- Tool control

Extremely Compact, Two Motor Versions

The M-824 uses a very compact drive with motor and spindle mounted side-by-side and, with a height of 188 mm , has a considerably lower profile than either the $\mathrm{M}-850$, page $4-6$, or M-840, page 4-8 Hexapods. Two versions featuring different drives are offered: the selflocking M-824.3DG with DC motor and gearhead can position loads of up to 5 kg in any orientation (10 kg with baseplate horizontal) with sub-micron precision. The M-824.3PD with integrated ActiveDrive ${ }^{T M}$ system provides a significantly higher velocity of up to $25 \mathrm{~mm} / \mathrm{sec}$ with loads up to 5 kg .

Hexapod vs. Serial Kinematics Systems

The Hexapod is driven by six high-resolution actuators all
connected directly to the same moving platform. This design provides a high system stiffness and a large clear aperture.

Because of the low mass of the moving platform, positioning operations can be performed with far lower settling times than with conventional, stack ed multi-axis systems. In such systems, runout, guiding errors, and the friction and inertia of moving cables all accumulate to limit accuracy and repeatability-problems which do not affect parallel kinematic systems like the Hexapod.

Fixed Virtual Pivot Point

For optics and other alignment tasks, it is important to be able to define a fixed pivot point. The sophisticated Hexapod controller allows choosing any point in space as the pivot point for the rotation axes by

Ordering Information
M-824.3VP
Compact Hexapod Microrobot with Controller, Direct Drive, Vacuum Compatible to $10^{-6} \mathrm{hPa}$
M-824.3VG
Compact Hexapod Microrobot with Controller, DC Motor Gearhead, Vacuum Compatible to $10^{-6} \mathrm{hPa}$

software command. The pivot point remains fixed relative to the platform.
Target positions in 6-space are entered in user-friendly coordinates and reached by smooth vectorized motion.

Vacuum Versions

Both models are available as vacuum versions that enable use in applications such as X-ray diffraction microscopy with ambient pressures down to $10^{-6} \mathrm{hPa}$.

The interferometer test shows the Z axis accuracy over the entire travel range of 25 mm and the extremely high repeatability of $\pm 0.046 \mu \mathrm{~m}$
 6D controller and sophisticated, user-friendly positioning and alignment sofware. Keypad and display are optional

Open Architecture

Control of the hexapod is facilitated by the controller' s open interface architecture, which provides a variety of high-level commands and includes a macro language for programming and storing command sequences.

Model	M-824.3DG	M-824.3PD	Units
Active axes	X, Y, Z, $\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}, \theta_{\mathrm{Z}}$	X, Y, Z, $\theta_{X}, \theta_{Y}, \theta_{Z}$	
Motion and positioning			
*Travel range X, Y	± 22.5	± 22.5	mm
*Travel range Z	± 12.5	± 12.5	mm
*Travel range θ_{X}, θ_{Y}	± 7.5	± 7.5	-
*Travel range θ_{z}	± 12.5	± 12.5	。
Single-actuator drive	DC-motor, gearhead	ActiveDrive ${ }^{\text {TM }}$ DC Motor	
Actuator stroke	± 12.5	± 12.5	mm
Single-actuator design resolution	0.007	0.5	$\mu \mathrm{m}$
Integrated sensor	Rotary encoder	Rotary encoder	
Sensor resolution	2048	2048	cts./rev.
${ }^{* *}$ Min. incremental motion $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	0.3	1	$\mu \mathrm{m}$
${ }^{* *}$ Min. incremental motion $\theta_{X}, \theta_{Y}, \theta_{Z}$	3.5	12	$\mu \mathrm{rad}$
Repeatability $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	± 0.5	± 0.5	$\mu \mathrm{m}$
Repeatability $\theta_{X}, \theta_{Y}, \theta_{Z}$	± 6	± 6	$\mu \mathrm{rad}$
Max. velocity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	1	25	mm / s
Max. velocity $\theta_{X}, \theta_{Y}, \theta_{Z}$	11	270	$\mathrm{mrad} / \mathrm{s}$
Typ. velocity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	0.5	10	mm / s
Typ. velocity $\theta_{X}, \theta_{Y}, \theta_{z}$	5.5	55	$\mathrm{mrad} / \mathrm{s}$
Mechanical properties			
*Stiffness X, Y	1.7	1.7	N/um
Stiffness Z	7	7	N/ $/ \mathrm{m}$
Load capacity (baseplate horizontal/any orientation)	10/5***	5/2.5	kg
Miscellaneous			
Operating temperature range	-10 to +50	-10 to +50	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	
Mass	8	8	kg
Controller			
Controller included	M-850.502	M-850.502	
Operating voltage	100-240 VAC, $50 / 60 \mathrm{~Hz}$	100-240 VAC, $50 / 60 \mathrm{~Hz}$	

[^0]
More Hexapods: http://www.hexapods.net

Program Overview

- Piezo Ceramic Actuators \& Motors

■ Piezo Nanopositioning Systems and Scanners
■ Active Optics / Tip-Tilt Platforms
■ Capacitive Nanometrology Sensors

- Piezo Electronics: Amplifiers and Controllers
- Hexapod 6-Axis Positioners / Robots
- Micropositioning Stages \& Actuators
- Photonics Alignment Systems, Solutions for Telecommunications
- Motor Controllers

■ Ultrasonic Linear Motors

Request or download the complete PI Nanopositioning \& Piezo Actuator Catalog

USA (East) \& CANADA
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
Tel: +1 (508) 8323456
Fax: +1 (508) 8320506
info@pi-usa.us
www.pi-usa.us

JAPAN

PI Japan Co., Ltd.
Akebono-cho 2-38-5
Tachikawa-shi
J-Tokyo 190
Tel: +81 (42) 5267300
Fax: +81 (42) 5267301
info@pi-japan.jp
www.pi-japan.jp

CHINA
Physik Instrumente (PI Shanghai) Co., Ltd. Building No. 7-301 Longdong Avenue 3000 201203 Shanghai, China Tel: +86 (21) 68790008 Fax: +86 (21) 68790098
info@pi-china.cn www.pi-china.cn

FRANCE
PI France S.A.S
244 bis, avenue
92120 Montrouge I-20091 Bresso (MI)
Tel: +33 (1) 55226000
Fax: +33 (1) 41485662
info.france@pi.ws
www.pi-france.fr
ITALY
Physik Instrumente (PI) S.r.I.

Tel: +39 (02) 66501101
Fax: +39 (02) 87385916
info@pionline.it
www.pionline.it

USA (West) \& MEXICO
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel: +1 (949) 6799191
Fax: +1 (949) 6799292
info@pi-usa.us
www.pi-usa.us

PI Japan Co., Ltd.
Hanahara Dai-ni Building, \#703
4-11-27 Nishinakajima,
Yodogawa-ku, Osaka-shi
J-Osaka 532
Tel: +81 (6) 63045605
Fax: +81 (6) 63045606
info@pi-japan.jp
www.pi-japan.jp
UK \& IRELAND
PI (Physik Instrumente) Ltd.
Trent House
University Way,
Cranfield Technology Park, Cranfield,
Bedford MK43 0AN
Tel: +44 (1234) 756360
Fax: +44 (1234) 756369
uk@pi.ws
www.physikinstrumente.co.uk

GERMANY

Physik Instrumente (PI)
GmbH \& Co. KG
Auf der Römerstr. 1
D-76228 Karlsruhe/Palmbach
Tel: +49 (721) 4846-0
Fax: +49 (721) 4846-100
info@pi.ws •www.pi.ws

[^0]: *The travel ranges of the individual coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \theta_{\mathrm{X}}, \theta_{\mathrm{Y}}, \theta_{\mathrm{Z}}$) are interdependent.
 The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less
 **Simultaneous motion of all 6 actuators No moving cables (as in serial-kinematics stacked systems) to introduce bending sources, torque and friction, which degrade positioning accuracy
 ***Self Locking
 Technical data are specified at $20 \pm 3^{\circ} \mathrm{C}$. Data for vacuum versions may differ.

