With a platform diameter of only 10 cm the M-810 Hexapod is the most compact parallel-kinematics micropositioning system to date. In addition to positioning all six axes with high speed and accuracy, it allows the user to define the center of rotation (pivot point) anywhere inside or outside the system envelope by one simple software command. This makes it ideal for all complex positioning tasks with restricted space.

Extremely Compact, Great Freedom of Motion
The M-810.00 with its direct-drive torque motors and ActiveDrive™ system with integrated servo amplifiers provides an increased velocity of up to 10 mm/s for loads up to 5 kg. Small and compact, the Hexapod allows a large stroke of up to 40 mm (linear) and 60° (angular).

Hexapod vs. Serial Kinematics Systems
The Hexapod is driven by six high-resolution actuators all connected directly to the same moving platform. This design provides a high system stiffness and a large clear aperture.

Because of the low mass of the moving platform, positioning operations can be performed with far lower settling times than with conventional,
stacked multi-axis systems. In such systems, runout, guiding errors, and the friction and inertia of moving cables all accumulate to limit accuracy and repeatability-problems which do not affect parallel kinematic systems like the Hexapod.

User-Defined Pivot Point
For optics and other alignment tasks, it is important to be able to define a fixed pivot point. The sophisticated Hexapod-controller allows choosing any point in space as the pivot point for the rotation axes with a simple software command. The pivot point remains fixed relative to the platform.

Target positions in 6-space are entered in user-friendly coordinates and reached by smooth vectorized motion.

Open Architecture
Control of the hexapod is facilitated by the controller’s open interface architecture, which provides a variety of high-level commands and includes a macro language for programming and storing command sequences.

Technical Data

<table>
<thead>
<tr>
<th>M-810.00</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active axes</td>
<td>X, Y, Z, OX, OY, OZ</td>
</tr>
<tr>
<td>Motion and positioning</td>
<td></td>
</tr>
<tr>
<td>*Travel range X, Y</td>
<td>±20 mm</td>
</tr>
<tr>
<td>*Travel range Z</td>
<td>±6.5 mm</td>
</tr>
<tr>
<td>*Travel range OX, OY</td>
<td>±11 °</td>
</tr>
<tr>
<td>*Travel range OZ</td>
<td>±30 °</td>
</tr>
<tr>
<td>Actor drive</td>
<td>Brushless DC Motor, ActiveDrive™</td>
</tr>
<tr>
<td>Actuator stroke</td>
<td>±7.5 mm</td>
</tr>
<tr>
<td>Single-actuator design resolution</td>
<td>0.04 µm</td>
</tr>
<tr>
<td>Integrated sensor</td>
<td>Rotary encoder</td>
</tr>
<tr>
<td>Sensor resolution</td>
<td>12800 Cts./rev.</td>
</tr>
<tr>
<td>**Min. incremental motion X, Y</td>
<td>1 µm</td>
</tr>
<tr>
<td>**Min. incremental motion Z</td>
<td>0.2 µm</td>
</tr>
<tr>
<td>**Min. incremental motion OX, OY, OZ</td>
<td>3.5 µrad</td>
</tr>
<tr>
<td>Repeatability X, Y</td>
<td>±2 µm</td>
</tr>
<tr>
<td>Repeatability Z</td>
<td>±0.5 µm</td>
</tr>
<tr>
<td>Repeatability OX, OY, OZ</td>
<td>±5 µrad</td>
</tr>
<tr>
<td>Backlash X, Y</td>
<td>2 µm</td>
</tr>
<tr>
<td>Backlash Z</td>
<td>0.5 µm</td>
</tr>
<tr>
<td>Max. velocity X, Y, Z</td>
<td>10 mm/s</td>
</tr>
<tr>
<td>Max. velocity OX, OY, OZ</td>
<td>250 mrad/s</td>
</tr>
<tr>
<td>Typ. velocity X, Y, Z</td>
<td>5 mm/s</td>
</tr>
<tr>
<td>Typ. velocity OX, OY, OZ</td>
<td>120 mrad/s</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
</tr>
<tr>
<td>Stiffness X, Y</td>
<td>0.1 N/µm</td>
</tr>
<tr>
<td>Stiffness Z</td>
<td>4 N/µm</td>
</tr>
<tr>
<td>Max. load (baseplate horizontal / any orientation)</td>
<td>5 / 2.5 kg</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +50 °C</td>
</tr>
<tr>
<td>Material</td>
<td>Stainless steel, aluminum</td>
</tr>
<tr>
<td>Mass</td>
<td>1.7 kg</td>
</tr>
<tr>
<td>Controller</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>100–240 VAC, 50/60 Hz</td>
</tr>
</tbody>
</table>

* The travel ranges of the individual coordinates (X, Y, Z, OX, OY, OZ) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.
** Six-axis move. No moving cables (unlike serial-kinematic stacked systems). Eliminates bending, inertia and friction, improving accuracy.
Technical data are specified at 20 ±3°C. Data for vacuum versions may differ.
The M-811.STV vacuum-compatible Hexapod comes complete with software and a highly specialized Hexapod controller. It combines small size with high-load capacity and high accuracy.

- **Vacuum-Compatible Miniature Hexapod**
- **Complete with Specialized Hexapod Controller and Software**
- **Travel Ranges 34 x 32 x 13 mm, Rotation to 42 Degrees**
- **Load Capacity to 5 kg**
- **Actuator Resolution 40 nm**
- **Min. Incremental Motion to 200 nm**
- **Repeatability up to ±0.2 μm**
- **Velocity to 10 mm/s**

The M-811.STV is PI’s smallest standard vacuum-compatible Hexapod. Despite its size it can handle loads up to 5 kg (2.5 kg in any orientation) and achieves velocities up to 10 mm/sec. With a diameter of only 130 mm and a height of 115 mm it provides travel ranges up to 35 mm in the XY-plane and up to 13 mm in the Z-direction. In combination with the large tilting angles of 20° around the X and Y axis and up to 40° around the vertical axis it allows for complex motion profiles with particularly flexible placement of the load – a great advantage in restricted areas (such as beam lines) and small vacuum chambers.

Each individual strut has a positioning resolution of 40 nm; multi-axis motion can be accomplished with sub-micron repeatability. In addition to controlling all axes in Cartesian coordinates, a software command allows the user to select the center of rotation (pivot point) freely anywhere inside or outside the system envelope.

Application Examples
- Biotechnology
- Semiconductor technology
- Micromachining
- Micromanipulation
- X-ray diffraction measurements
- Tool control

Hexapod vs. Serial Kinematics Systems

The Hexapod is driven by six high-resolution actuators all connected directly to the same moving platform. This design provides a high system stiffness and a large clear aperture. Because of the low mass of the moving platform, positioning operations can be performed with far lower settling times than with conventional, stacked multi-axis systems. In such systems, runout, guiding errors, and the friction and inertia of moving cables all accumulate to limit accuracy and repeatability – problems which do not affect parallel kinematic systems like the Hexapod.

Fixed Virtual Pivot Point

For optics and other alignment tasks, it is important to be able to define a fixed pivot point. The sophisticated Hexapod controller allows choosing any point in space as the pivot point for the rotation axes by software command. The pivot point remains fixed relative to the platform.

Ordering Information

M-811.STV
Miniature Hexapod Microrobot with Controller, Direct Drive, 5 kg Load, Vacuum Compatible to 10⁻⁶ hPa

Ask about custom designs!

Target positions in 6-space are entered in user-friendly coordinates and reached by smooth vectorized motion.

Open Architecture

Control of the Hexapod is facilitated by the controller's open interface architecture, which provides a variety of high-level commands and includes a macro language for programming and storing command sequences.

The Hexapod comes with a powerful 6D controller and sophisticated, user-friendly positioning and alignment software. Keypad and display are optional.
Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>M-811.STV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active axes</td>
<td>X, Y, Z, θX, θY, θZ</td>
</tr>
</tbody>
</table>

Motion and positioning

*Travel range X, Y, Z ±17, ±16, ±6.5 mm
*Travel range θX, θY, θZ ±10°, ±10°, ±21°

Actuator drive: Brushless DC motor, ActiveDrive

Integrated sensor: Rotary encoder

Sensor resolution: 12800 cts./rev.

**Min. incremental motion X, Y 0.5 μm
**Min. incremental motion θ 0.2 μm
**Min. incremental motion θX, θY, θZ 10 μrad

Repeatability X, Y ±0.5 μm
Repeatability θX, θY, θZ ±2 μrad

Backlash X, Y 1 μm
Backlash Z 0.2 μm

Max. velocity X, Y, Z 10 mm/s
Max. velocity θ, θ, θ 250 mrad/s
Typ. velocity X, Y, Z 5 mm/s
Typ. velocity θ, θ, θ 120 mrad/s

Mechanical properties

Stiffness X, Y 0.2 N/μm
Stiffness Z 3.6 N/μm

Load (baseplate horizontal / any orientation) 5 / 2.5 kg

Miscellaneous

Operating temperature range 0 to +50 °C
Material Stainless steel, aluminum
Mass 2.2 kg

Controller

Operating voltage 100-240 VAC, 50/60 Hz

* The travel ranges of the individual coordinates (X, Y, Z, θX, θY, θZ) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.

** Six-axis move. No moving cables (unlike serial-kinematic stacked systems). Eliminates bending, inertia and friction, improving accuracy.

Technical data are specified at 20 ±3 °C. Data for vacuum versions may differ.
M-810.0A Miniature Hexapod
6 Degrees of Freedom & High Precision in a Small Package

- Most-Compact Hexapod in the PI Portfolio
- Travel Ranges 40 x 40 x 13 mm, Rotation to 60 Degrees
- Clear Aperture Ø 59 mm
- Load Capacity to 5 kg
- Resolution of a Single Strut 40 Nm
- Min. Incremental Motion to 200 Nm
- Repeatability up to ±0.5 µm
- Velocity to 10 mm/s

The M-810 miniature Hexapod is now available with a modified cable exit. This makes for even more compact integration.

Application Examples
- Biotechnology
- Semiconductor technology
- Micromachining
- Micromanipulation
- X-ray diffraction measurements
- Tool control

Ordering Information
M-810.0A
Miniature Hexapod Microrobot with Controller, Direct Drive, Modified Cable Outlet
Ask about custom designs

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>M-810.0A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active axes</td>
<td>X, Y, Z, θX, θY, θZ</td>
</tr>
</tbody>
</table>

Motion and positioning

- Travel range X, Y: ±20 mm
- Travel range Z: ±6.5 mm
- Travel range θX: ±11°
- Travel range θY: ±30°

Actor drive
- Brushless DC motor, ActiveDrive

Actuator stroke
- ±7.5 mm

Single-actuator design resolution
- 0.04 µm

Integrated sensor
- Rotary encoder

Sensor resolution
- 12800 cts./rev.

**Min. incremental motion X, Y: 1 µm
**Min. incremental motion Z: 0.2 µm
**Min. incremental motion θX, θY, θZ: 3.5 µrad

Repeatability X, Y: ±2 µm
Repeatability Z: ±0.5 µm
Repeatability θX, θY, θZ: ±5 µrad
Backlash X, Y: 2 µm
Backlash Z: 0.5 µm
Max. velocity X, Y, Z: 10 mm/s
Max. velocity θX, θY, θZ: 250 mrad/s
Typ. velocity X, Y, Z: 5 mm/s
Typ. velocity θX, θY, θZ: 120 mrad/s

Mechanical properties

- Stiffness X, Y: 0.1 N/µm
- Stiffness Z: 4 N/µm
- Max. load (baseplate horizontal/any orientation): 5 kg / 2.5 kg

Miscellaneous

- Operating temperature range: 0 to +50 °C
- Material: Stainless steel, aluminum
- Mass: 1.7 kg

Controller

- Operating voltage: 100 – 240 VAC, 50 / 60 Hz

* The travel ranges of the individual coordinates (X, Y, Z, θX, θY, θZ) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.

** Six-axis move. No moving cables (unlike serial-kinematic stacked systems) to introduce bending forces, torque and friction which degrade positioning accuracy. Technical data are specified at 20 ±3 °C. Data for vacuum versions may differ.
USA (East) & CANADA
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
Tel: +1 (508) 832 3456
Fax: +1 (508) 832 0506
info@pi-usa.us
www.pi-usa.us

USA (West) & MEXICO
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel: +1 (949) 679 9191
Fax: +1 (949) 679 9292
info@pi-usa.us
www.pi-usa.us

JAPAN
PI Japan Co., Ltd.
Akebono-cho 2-38-5
Tachikawa-shi
J-Tokyo 190
Tel: +81 (42) 526 7300
Fax: +81 (42) 526 7301
info@pi-japan.jp
www.pi-japan.jp

CHINA
Physik Instrumente
(PI Shanghai) Co., Ltd.
Building No. 7-301
Longdong Avenue 3000
201203 Shanghai, China
Tel: +86 (21) 687 900 08
Fax: +86 (21) 687 900 98
info@pi-china.cn
www.pi-china.cn

FRANCE
PI France S.A.S
244 bis, avenue Max Dormoy
92120 Montreuil
Tel: +33 (1) 55 22 60 00
Fax: +33 (1) 41 48 56 62
info.france@pi.ws
www.pi-france.fr

UK & IRELAND
PI (Physik Instrumente) Ltd.
Trent House
University Way,
Cranfield Technology Park,
Cranfield,
Bedford MK43 0AN
Tel: +44 (1234) 756 360
Fax: +44 (1234) 756 369
uk@pi.ws
www.physikinstrumente.co.uk

ITALY
Physik Instrumente (PI) S.r.l.
Via G. Marconi, 28
I-20091 Bresso (MI)
Tel: +39 (02) 665 011 01
Fax: +39 (02) 873 859 16
info@pionline.it
www.pionline.it

GERMANY
Physik Instrumente (PI)
GmbH & Co. KG
Auf der Römerstr. 1
D-76228 Karlsruhe/Palmbach
Tel: +49 (721) 4846-0
Fax: +49 (721) 4846-100
info@pi.ws · www.pi.ws

Program Overview
- Piezo Ceramic Actuators & Motors
- Piezo Nanopositioning Systems and Scanners
- Active Optics / Tip-Tilt Platforms
- Capacitive Nanometrology Sensors
- Piezo Electronics: Amplifiers and Controllers
- Hexapod 6-Axis Positioners / Robots
- Micropositioning Stages & Actuators
- Photonics Alignment Systems, Solutions for Telecommunications
- Motor Controllers
- Ultrasonic Linear Motors

Request or download the complete PI Nanopositioning & Piezo Actuator Catalog

More Hexapods:
http://www.hexapods.net

© Physik Instrumente (PI) GmbH & Co. KG 2008. Subject to change without notice. All data are superseded by any new release. For more information, visit www.pi.ws.